ays AP and Framework

t0-C Op‘tlmlze Data- Movement for _--;.,t..
Heterogeneous Memory Systems

Mark Hildebrand, Jason Lowe-Power,
Venkatesh Akella

jlowepower@ucdavis.edu

rch

DAVIS ARCHITECTURE RESEARCH COMPUTER SCIENCE

Summary

Working memory sizes growing
Heterogeneous memory devices needed to keep up

Current data movement strategies are limited
High overheads, inflexible, missing important optimizations

CachedArrays: Separate the mechanisms and policies
Simple interface for programmers
Flexible backend for framework developers

Prototype in software showing efficiency for CNNs and DLRM

COMPUTER SCIENCE

Memory requirements are growing

1000
Not just deep learning - &
: 2 (175B) e
Graph analytics: € 100 |
billions of vertices 5 TR '
trillions of edges 5 (8.38) pra
2 10 o
5 # TS
= ' (11B)
L /
Working memory E S 6122
Byte addressable & A
Low latency o ' BERT-Large
. i 3 01 2 (340M)
High bandwidth =
ELMo
(94M)
0.01
2018 2019 2020

Megatron-Turing

NLG (530B)

Turing-NLG
(17.2B)

2021 2022

COMPUTER SCIENCE

System architecture
> High-bandwidth
HBMDRAMDie:::; memory

HBM DRAM DieI 2

HBM'DRAM Die

L
HBM DRAM DieI
== RN
Logic Die

Traditional
DRAM

Remote memory

3D XPoint f
memory [

COMPUTER SCIENCE

Why conventional CachedArrays

echniques don’t work solution to. bridge the
semantic ga

OO

HBM DRAM Die

i
HBM DRAM Die

nevoramoie’ ' !

P
HBM DRAM Die

COMPUTER SCIENCE

Conventional data movement -
Core

Why not just treat faster memory as a cache?

Caches have been great!
Block-level
Programmer transparent
Traditionally, low overhead

DRAM has some issues, though...

Difference between SRAM & DRAM

In SRAM caches: In DRAM caches:

Tag, LRU, etc. in different ~ Off-chip |
structure. High bandwidth Tag, LRU, etc. share bus with data
Lower bandwidth

Higher latency

HBEM DRAM Diel gt

Memory HBMDRAMDie' ' '

controller WS Y

HBM DRAM DieI o

Logic Die

Data Macro
(256 KiB)

LRU Tag

https://fuse.wikichip.org/news/1177/amds-zen-cpu-complex-cache-and-smu/2/ COMPUTER SCIENCE

Results: Microbenchmarks on hardware

0D DRAM Read |1 DRAM Write | INVRAM Read BB NVRAM Write | B Effective

Each read requires 3

DO
o

0 HHH I HHH I dCCeSSeS

I
Random Random Random Random Sequential

64 B 128 B 256 B 512 B

—_
o

Mean Bandwidth
(GB/s)

(a) Read-only benchmark, clean LLC read misses, 24 threads.

Each write requires 5
accesses

COMPUTER SCIENCE

Option 2: Operating system paging

Many, many examples of “NUMA-style” data movement

Three problems
Data movement granularity is 4 KiB or 2 MiB pages
Timeliness of movement: Policy doesn’t have insight into dynamic access
Policy has no information on semantics of data use

OK for some workloads (e.g., cloud/VM)
Inefficient for many others

COMPUTER SCIENCE

Requirements for efficient data movement

Transparent to the programmer (Mostly)
Hints are OK
Library (e.g., PyTorch) changes OK

Semantic information of data use to drive movement
Sage, vDNN, AutoTM, ZeRO-Offload, etc.

Important optimizations
1. Initial access data placement in fast memory
2. Elide dead data writebacks
3. Move data at right granularity
4. Avoid polluting fast memory

COMPUTER SCIENCE

CachedArrays APl for data movement

Exposes the following hints to the programmer/library developer

Use object granularity. Not page, block, etc.

will use am going to read and/or write this object
will read am going to access object read-only
will write |am going to write and/or read this object
archive am not going to use this object for a while

retire am never going to access this object again

COMPUTER SCIENCE

Using the CachedArrays APl for CNNs
archive

Conv/Bias/
Activation

will read

FORWARD

'S
| Activations
T

1

Activations

Loss

Diff Source

retire BACKWARD

AWeight ABias

will write

COMPUTER SCIENCE

Different data manager
for different hardware

Policy: Implements
high-level APl in

High-level API low-level DMI

App/Runtime

(Objects)
will use/r/w Data manager:

. Implements low-level
ar‘cl.uve DMI and manages
retire

Low-level DMI memory pools
(block/page/atom)

evict

mark _dirty

prefetch

Fast memory

Slow memory

COMPUTER SCIENCE

—xample of low-level DM

function prefetch(
policy, object, force::Bool = false)
X = DM.getprimary(object) <«

Policy . .
| APPLICATION | an” | POLICY | if DM.in(x, SLOW) <
/ : sz = DM.sizeof(object)

A
Ai’?égs Managiit?aentAPflT y =.DM.a11.Locate(FAST, S7) m—
' if isnothing(y) && force
Y DATA MANAGER start = find_region(policy)
: el DM.evictfrom(FAST, start, sz) do region
[Object 1 :} Oﬂfd: [:Obkmt3J evict(policy, DM.parent(region))
\ % end
_____________ y = DM.allocate(FAST, sz)::Region
Devicel | /Al Device 2 else if isnothing(y) && !force
r T ‘q;i return
: i Region Region , i end
[Regmnl 1J [Z-J [Ehl IREQIDM ZJ DM. copyto(y, X) <«
DM.1link(Xx, y) <«

DM.setprimary(object, y) <«
end

return
end COMPUTER SCIENCE

Whitley 2-socket System

—valuation platform

Optane and DRAM share bus
Optane DIMMs: >512GB
DRAM DIMMs: >64-128GB

PCle Gen4 PCle Gen4

Ice Lake-SP
(1CX)

Ice Lake-SP
(ICX)

[———
1

Lewisburg R I LewisburgR
S

DDR4 DIMMs

Total memory per node:
BN DDR4/Intel® Optane™ Persistent Memory

3-4TB Optane
384-512GB DRAM

L k 11 k
(SRAM <64M B) arge Networks Small Networks
Model Batchsize | Footprint Model Batchsize
DenseNet 264 1536 526 GB || DenseNet 264 504
ResNet 200 2048 529 GB ResNet 200 640
Compa re to DRAM Cache VGG 416 256 520 GB VGG 116 320

(2LM)

COMPUTER SCIENCE

Results for DNNs 200 | 291)
Three optimizations: % 211 | 216

Memory freeing (M) ’E 200 178 n

retire 3 131 149
Allow local accesses (L) 5100
Prefetching (P) B
SRR
(L\F ‘L\>\ > o> o Q?".'\F

Benefits of retire (memory freeing)

‘ e 9T M: () === 2LM: M
[

Used (GB)
=
=
S

Take away: Adding semantic information about

memory use improves efficiency

Memory reclaimed at lower cost

COMPUTER SCIENCE

Results for DNNs 200 | 291)
Three optimizations: % 211 216
Memory freeing (M) E 200 |- 178 h
retire 3 131 | 143
Allow local accesses (L) =100
Prefetching (P) B
I R)
SRRV A
PN N v Y

Data placement and object-based movement

N

Placing data in fast/local
memory reduces
movement

N
i

Take away: Smart data placement and movement i

oved (TB
s o 0o

reduces movement and increases efficiency g
U
movement Improves = 0.027 0.277 0.283
efficiency z 01 Joate| Joagg || |0

2LM: 0 2LM: M= CA: 0 CA:L CA:LM CA: LMP

COMPUTER SCIENCE

Results for DNNs 901

300 8

Three optimizations:

211 216
200 178 -

Memory freeing (M)
retire

Allow local accesses (L)
Prefetching (P)

100

[teration Time (s)

Take away: Prefetching doesn’t always help.

Flexibility is required

COMPUTER SCIENCE i

Results for DLRM (sparse accesses)

DLRM: Deep learning A L
recommendation mode| T "
Very large embedding tables which E’“{)) .
are sparsely accessed ‘ ‘ ‘ -2

by g

dense features sparse features

Hildebrand et al. Efficient Large Scale DLRM Implementation on Heterogeneous
Memory Systems https://doi.org/10.1007/978-3-031-32041-5_3 COMPUTER SCIENCE

https://doi.org/10.1007/978-3-031-32041-5_3

Results for DLRM (sparse accesses)

-] Lookup [Update . .
No Locality|gcommtation With Locality
1,500
= — 800 | 173 | [136
: 604 22 B 131 > 60
'§ 233 | | 99| |47 | |480 < 400
= 500 = 548
e A 200 416 | | 418 | | 418
032|417 | |422| |423
0
0 MM CE CE CE MM CE CE CE
Simple Static Dynamic Simple Static Dynamic

(a) Uniform.

(b) Zipf (o« = 1.0)

Hildebrand et al. Efficient Large Scale DLRM Implementation on Heterogeneous
Memory Systems https://doi.org/10.1007/978-3-031-32041-5_3

COMPUTER SCIENCE

https://doi.org/10.1007/978-3-031-32041-5_3

—uture work

V. Compute

Apply ideas to remote memory E <press

Link

Implement in PyTorch instead of Julia O Py | O rC h
E |

-
- 2P

Hardware support and acceleration A X '

COMPUTER SCIENCE

Conclusions

o
%
=%
| -~
-
§ ==
== ==

1 WA L\ \ §
1 WA \ \ \ ¥

Memory systems are heterogeneous

Naively applying yesterday’s solutions doesn’t work

Hardware-software co-design is the future B - SECTE

/ Data Data \
Access Management APl y

Involving the program, not the programmer : DATA MANAGER

Co-design data movement and placement { J

Device 1

Just the first step: Many optimizations possible! { -

COMPUTER SCIENCE

Why AutoTM wins Or, why DRAM caches lose

1. DRAM cache is direct-mapped
* Misses miss for no good reason
« “Conflict” misses, but increasing associativity is hard

2. Bandwidth is poorly utilized on misses
* Extra accesses
 Trafficis poorly “shaped”

3. AutoTM can skip dead writebacks
* Temporary data that will be written before it is read

COMPUTER SCIENCE

Software to the rescue

Key idea: “programmers” know a lot about their workloads

Read: compilers, runtimes, experts...

1

Hardware-managed caches suffer from
frequent inefficient management
fine-grained unpredictable accesses

Programs operate on objects
Can exploit statically predictable accesses

oneAPlI

COMPUTER SCIENCE

AutoTM

Goal: Minimize Execution Time Intermediate Tensors
* Arbitrary computation graph.
* Size constraint on fast memory. Compute Kernels

How
* Place tensors in fast or slow memory.
* Optimal tensor movement.

Strategy

* Profile kernel performance

* Model tensor assighnment as ILP [D Producer of a tensor (] Use (read) of a tensor]
() Last use of a tensor

COMPUTER SCIENCE

Software

e Modified the ngraph' compiler.

e Julia's JuMP? package for ILP
modeling.

® Gurobi® as the ILP solver.
Hardware

e 1.5 TB Optane™ DC PMM
e 384 GiB DRAM

Workloads

~-

Experiments!

Conventional | Batchsize | Memory (GB)
Inception v4 1024 111
Vgg 19 2048 143
Resnet 200 512 132
DenseNet 264 512 115

Large Batchsize | Memory (GB)
Inception v4 6144 659
Vgg 416 128 658
Resnet 200 2560 651
DenseNet 264 3072 688

COMPUTER SCIENCE

Perf compared to DRAM Cache Up to 3x performance
over hardware cache!

I0static-AutoTM 0 sync-AutoTM

Speedup over 2LM 2 | -

Higher is Better .

0 |

0 A 0 2
Veghtd (331;12@%10“ v (%élsgetgoo %2?15;\& ot 264 (301)

COMPUTER SCIENCE i

	Slide 1: CachedArrays: API and Framework to Optimize Data Movement for Heterogeneous Memory Systems
	Slide 2: Summary
	Slide 3: Memory requirements are growing
	Slide 4: System architecture
	Slide 5
	Slide 6: Conventional data movement
	Slide 7: Difference between SRAM & DRAM
	Slide 8: Results: Microbenchmarks on hardware
	Slide 9: Option 2: Operating system paging
	Slide 10: Requirements for efficient data movement
	Slide 11: CachedArrays API for data movement
	Slide 12: Using the CachedArrays API for CNNs
	Slide 13
	Slide 14: Example of low-level DMI
	Slide 15: Evaluation platform
	Slide 16: Results for DNNs
	Slide 17: Benefits of retire (memory freeing)
	Slide 18: Results for DNNs
	Slide 19: Data placement and object-based movement
	Slide 20: Results for DNNs
	Slide 22: Results for DLRM (sparse accesses)
	Slide 23: Results for DLRM (sparse accesses)
	Slide 24: Future work
	Slide 25: Conclusions
	Slide 30: Why AutoTM wins Or, why DRAM caches lose
	Slide 31: Software to the rescue
	Slide 32: AutoTM
	Slide 33: Some results
	Slide 34: Perf compared to DRAM Cache

