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Hierarchical memory potential

- Application performance key to users and developers

- Very few systems are application specific

- Multi-purpose, multi-user systems require hardware
choices

Cache

- Processor, memory, accelerator, storage
L ) ] Memory
- Optimising for a range of applications hard Storage

- A64FX one end of the spectrum

- Small memory footprint for high performance/energy balance

- HPE Superdome flex the other end of the spectrum

- Very large memory footprint for shared memory/non-scaling
applications
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Hierarchical memory potential

- Persistent memory provides scope to optimise
DRAM usage and I/O performance
- Support low volume high performance memory
- Support very high performance I/O

- Enable application specialisation for memory
performance

- Requires Byte-Addressable Persistent Memory (B-APM)

- Multi-tiered memory configurations
- 3 tier memory Cache
- HBM - DRAM - B-APM
- 2 tler memory
- HBM - B-APM
Slow Storage
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/O Optimisation with persistent memory

- n3d CFD application that uses combined
forward/adjoint method

- DNS used for Navier Stokes forward approach
- Adjoint method requires full DNS output
- DNS state is very large

- Medium simulation
* 72 processes maximum
- DNS state requires 4TB for storage

- Large simulation
* 512 processes maximum
- DNS state requires 40TB for storage

- Filesystem used to store data for the transition
_ between phases
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/O Optimisation with persistent memory

- Assuming compute nodes with 256GB DRAM, to fit in
DRAM

- Medium case would require a minimum of 16 nodes
- Large scale would require a minimum of 160 nodes

- Using filesystem (Lustre) takes:
- Medium case using 3 nodes: ~9800 seconds
- Large case using 22 nodes: ~80000 seconds

- Using persistent memory for I/O on the nodes
- Medium case using 3 nodes: ~8500 seconds (~15% faster)
- Large case using 22 nodes: ~9200 seconds (~90% faster)

- Using persistent memory as memory on the nodes
- Medium case using 3 nodes: ~8300 seconds
- Large case using 22 nodes: ~9000 seconds
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Memory Persistent Memory

- I/O uses file operations
- Kernel writing to O/S buffer, operating system writes that back to the file
- Potential for O/S caching
- Writes data in large chunks, bad for random access
- Requires interaction with O/S

- 1/O consistency application responsibility
» Flush required to ensure actual persistency

- Required because of the nature of previous I/O devices
- Asynchronous

 1/O controller
- Shared

- PMDK/PMEM approach

- Use as memory
- No interaction with kernel outside standard malloc/free
- Byte (cache line) granularity
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Optane Memory

(inte) OPTANE DCO»

PERSISTENT MEMORY
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- Higher capacity than DRAM

- Lower performance than DRAM
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Bandwidth (GB/s)

Optane memory

- Using persistent memory to reduce resident set
size
- Shrink architectural memory requirements

IOR Easy Write Bandwidth using fsdax on one node varying block sizes IOR Easy Write Bandwidth using pmdk on one node varying black si
g block sizes
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https://github. com/adrianjhpc/DistributedStream git
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Multi-level memory exploitation .

Simple image sharpening stencil
Each pixel replaced by a weighted
average of its neighbours
weighted by a 2D Gaussian
averaged over a square region
we will use:

Gaussian width of 1.4
a large square region
then apply a Laplacian

this detects edges
a 2D second-derivative V2

Gx,y)

Combine both operations
produces a single convolution filter

4 similar sized arrays, two thatare 4 > —
updated and two that are source data 2T e
X




address = (int **) malloc (nx*sizeof (int *)
fuzzy = int2D(nx, ny, address);

3

+ nx*ny*sizeof (int));

pmemaddrl = pmem map file(filename, array size,PMEM FILE CREATE|PMEM FILE EXCL,

0666, &mapped lenl,

fuzzy = 1int2D(nx, ny, pmemaddrl);

int **int2D(int nx, int ny, int **idata) {
int 1;
idata[0] = (int *) (idata + nx);

for(i=1; i < nx; i++){
idata[i] = idatali-1] + ny;
}

return idata;

« Read-only datain DRAM

Calculation time was 1.426152 seconds
DRAM required 22GB

Calculation time was 25.436569 seconds

DRAM required 280GB
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+ Read-only data in Persistent Memory

Calculation time was 1.431711 seconds

DRAM required 15GB

Calculation time was 28.709221 seconds

DRAM required 160GB
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Comparing performance

- Looking at Optane performance between 15t and 3

generation
. Memory Location C Scal Add  Triadd
o 15t generatlon: NEXTGenlO system e (G%pfz) (SE;E) (GB/s) {GBafs)
All in DRAM 136 135 152 154
- Intel Cascade Lake (48 cores) Read datain Optane 80 80 79 80
Write data in DRAM
» Dual socket Read datain DRAM 167 167 250  24.9
Write data in Optane
. 3TB Optane memory All in Optane 155 151 212 214
. 19 2 G B D D R 4 https://github.com/adrianjhpc/DistributedStream
. Memory Location Copy Scale  Add  Triadd
o 3rd ge neration: P e g asus Syste m (persist horizon) (GB/s) (GB/s) (GB/s) (GB/s)
) ) All in DRAM 172 172 187 186
- Intel Sapph|re Rap|d5 Read data in Optane 135 135 112 112
Write data in DRAM
. < Read data in DRAM 29 29 41 41
Slngle SOCket Write data in Optane
All in Optane 23 24 28 28
¢ 2TB O ptan e (no pe?sli)st)
All in Optane 23 23 28 28
¢ 128G B D D RS (persist at end)
All in Optane 3 3 4 1
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MAD2Bench

- Port application to use smaller data domain and
swap out with persistent memory

- MAD2Bench was I/O benchmark, extended to memory
- Heavily blocked to reduce active memory footprint
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Application porting

- Using Optane for (simple) applications
- Custom configuration of which data structures to store in

Optane
- Chose applications that have large read only data
structures
Application Hardware Runtime Volatile Memory
(seconds) (GB)
sharpen DRAM 56 285
DRAM+B-APM 63 170
cfd DRAM 7.95 40
DRAM+B-APM  9.64 25
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Application porting

- Further memory reductions possible
- Tuning the persistent horizon
- Moving more data to the Optane
- Trade off time for memory

Persistency Hardware Runtime Volatile Memory
Horizon (seconds) (GB)

N/A DRAM 7.95 40

No persist DRAM+B-APM 9.64 25

Partial persist DRAM+B-APM 10.67 25

Full persist DRAM+B-APM 41.84 2
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1st Generation

IOR Easy Read Bandwidth using pmdk on one node varying block sizes IOR Easy Write Bandwidth using pmdk on one node varying block sizes
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34 generation Optane memory

Strong performance improvement on Optane
Especially for sympathetic access patterns

Architectural opportunities still apparent
No replacement for this low latency/small I/O size memory functionality
cxl memory won't provide equivalent

Memory controller lock-in was a big issue
What Intel thought was an advantage probably killed the product

Out-of-(volatile)memory algorithms/implementation still
interesting to consider

Allowing small data movements (I/O or memory) could let
applications be redesigned

Object store allows this on the I/O side
Maybe HBM-X + DRAM allows this for future architectures

At an energy cost
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