Evaluating the latest Optane memory: A glorious swansong?

Adrian Jackson
a.jackson@epcc.ed.ac.uk
EPCC, The University of Edinburgh
Edinburgh, UK

ABSTRACT

In this paper we evaluate the 3rd generation of Intel’s Optane non-
volatile memory technology, assess the performance it can provide,
and investigate the modes of use that can be beneficial in high
performance computing, both for application performance and
system architecture. We demonstrate sustained performance and
functionality improvements from the latest hardware, along with
I/O and memory performance and functionality that is not available
from other memory or storage hardware. We show that leveraging
Optane can provide significant reductions in the required volatile
memory for applications, with minimal performance impacts, with
appropriate memory hierarchy designs and considerations.

CCS CONCEPTS

« Computer systems organization — Distributed architectures;
Hardware — Memory and dense storage; External storage;
Information systems — Distributed storage.

KEYWORDS
Optane, NVRAM, B-APM, Storage, I/O

1 INTRODUCTION

Intel and Micron’s 3DXPoint non-volatile memory, also known as
Optane, was one of the most significant advances in memory tech-
nology of recent history. A product with much promise, providing
both high I/O performance and persistent memory characteristics,
it stood to bridge the gap between (relatively) small volatile mem-
ories, and large persistent storage hardware. With performance
slower than DRAM, but higher than NVMe or SSDs, even when
using high performance interconnects for storage devices, it had the
potential to significantly change computing systems architectures
and applications.

One of the key characteristics of Optane memory is its potential
to live within the memory controller’s domain, sitting on standard
memory buses, albeit requiring modified memory controllers capa-
ble of dealing with heterogenous memory latencies within the same
communication domain. This opened up byte-addressable function-
ality, extending I/O performance from block level operations (i.e.
good performance on 4K contiguous read and write operations)
down to cache line levels (i.e. 256 bytes).

The byte-addressable persistent memory (B-APM) functionality,
coupled with high capacity, ushered in a period of true hierarchical
memory, with systems available where RAM and B-APM were
provided both under the control of the same processor(s), and the
potential for future systems with high-bandwidth on-chip memory
(HBM), as well as DRAM and B-APM, in the same memory domain.
Unfortunately, it is not to be, or not to be yet, as first Micron then
Intel have decided to discontinue manufacturing 3DXPoint memory,

consigning it to the list of developed but unavailable hardware
technologies.

Whether this was caused by Optane not live up to the original
hype about potential performance, or because manufacturing costs
and yields were not favourable for economical production and sales
of Optane, is hard to tell without in-depth insider knowledge from
the companies concerned. What is clear, though, is it has left a
nascent ecosystem structured around hierarchical memory and
exploiting multi-level memory for application data storage and I/O.

Future non-volatile memory is likely to be supported through
disaggregated approaches, such as that developed by the Compute
Express Link consortium (CXL)!, where devices such as volatile and
non-volatile memory, storage hardware, and accelerators, can be ac-
cessed transparently across network connections. However, whilst
this approach has advantages around sharing resources across
nodes and clusters, it does not provide the byte level performance
that true in-node hierarchical memory, such as Optane plus DRAM,
provides.

Whilst 3DXPoint memory has been cancelled, Intel recently pro-
duced the third generation of hardware products in this line, also
known as Crow Pass, deployed using a DDR5 interconnect, and
promising higher I/O performance than the previous two genera-
tions of Optane hardware. In this paper, we present results from
benchmarking this third generation Optane memory, compare to
the performance of first generation Optane memory, and discuss
some of the potential benefits from using this type of memory
within high performance computing (HPC) systems and for HPC
applications.

Whilst this current generation of Optane memory will be the
last for the foreseeable future, these explorations into hierarchical
memory should still provide useful insight and illumination on how
hierarchical memory can be exploited and utilised by applications
and system designers, and help the computing community under-
stand how disaggregated memory such as that provided by CXL
devices, and hierarchical memory, such as that provided by Intel’s
Sapphire Rapids processor with onboard HBM and in-node DDR5
memories, can be best exploited and utilised.

2 OPTANE MEMORY

The B-APM memory that is provided in Optane DIMMs is a form of
memory that is both non-volatile (i.e. data persists through power
cycles) and can be accessed directly by the CPU through load and
store operations. Intel’s Optane Data Centre Persistent Memory Mod-
ule (DCPMM for short) offering has been through three gener-
ations of technology, originally starting in a DDR4 socket com-
patible DIMM form factor, which has been recently upgraded to

!https://www.computeexpresslink.org/

https://orcid.org/0000-0003-0073-682X
https://www.computeexpresslink.org/

Table 1: STREAM bandwidths with varying locations used
for reading and writing data

Memory Location Copy Scale Add Triadd
(GB/s) (GB/s) (GB/s) (GB/s)

All in DRAM 136 135 152 154

Read data in Optane 80 80 79 80

Write data in DRAM
Read data in DRAM 16.7 16.7 25.0 24.9
Write data in Optane
All in Optane 15.5 15.1 21.2 214

DDR5. These Optane DIMMs can be used alongside volatile mem-
ory DIMMs, using the same memory slots, meaning systems can
support varied configurations of volatile and non-volatile memory
spaces within the same compute node. Optane DIMMs are denser
than volatile memory, meaning significantly more capacity can
be provided through this form of hardware (typically 128, 256, or
512GB per DIMM).

To support the different memory types within the same memory
domain, specialised memory controllers are required, necessitat-
ing specific Intel processors that support Optane memory. The
extended memory controllers required additional functionality to
deal with the varied latencies of the different forms of memory in
the system, with Optane memory having both higher read and write
latencies than volatile DDR memory, and with Optane asymmetric
I/0 performance (read operations having lower latencies than write
operations, as demonstrated in the results presented in Table 1).
This data is from a system using first generation Optane memory,
with two 24-core processors in a single node, with 1.5TB of Optane
Memory per processor.

Optane DIMMs contain their own controller, which handles
the aggregation of write or read operations, encryption, and other
hardware level functionality. They can be operated in two modes,
one where the non-volatile memory provided by the Optane DIMMs
in a node is used as the main memory space, and any volatile
DRAM is used as a last level cache for that main memory space
(memory mode, or two-level memory), and one where volatile and
non-volatile memory are both present as separate address spaces
within the system, and can both be accessed independently by
applications (app-direct mode, or one-level memory).

Memory mode requires no application modification or program
changes to access the non-volatile memory, but does not enable the
use of the persistence functionality that Optane provides (data is
stored persistently, but there is no functionality to safely flush the
DRAM used for last level cache to that persistent memory, so the
consistency of data cannot be guaranteed). App-Direct mode allows
applications to utilise Optane as persistent storage, but required
programmers to either utilise the PMDK library (described in more
detail in the next section) or to use the Optane memory as a block
device (i.e. a standard file storage device).

In this paper we focus on the App Direct mode, as Memory mode
operations do not fully exploit the functionality Optane provides,
and performance is directly managed by the memory subsystem as
with any cache functionality.

Jackson, A.

3 PROGRAMMING OPTANE MEMORY

The primary mechanism provided for programming Optane mem-
ory is the Persistent Memory Development Kit (PMDK) library [2].
This approach re-uses the naming scheme from filesystems as tra-
ditional persistent entities and maps the B-APM regions into the
address space of a process (similar to memory mapped files in
Linux). Once the mapping has been initiated, the file descriptor
is no longer needed and can be closed. In this way, data can be
retrieved from the B-APM using the file handle as the entry point
to the memory address space, but I/O operations are undertaken
using memory functionality, rather than file I/O operations. This by-
passes the block I/O approach of traditional filesystems, removing
both the asynchronous nature of operating system I/O calls and the
associated I/O access sizes (block-based I/0, i.e. 4KB operations).

PMDK provides a range of different functionality, from mem-
ory pools to object stores, but for direct memory operation, the
libpmem2 library gives read/write functionality from application
code. This C library provides functions to allocate regions of mem-
ory with the Optane B-APM, along with optimised calls to un-
dertake standard operations (i.e. memcpy), and to persist data to
B-APM.

As application data lives within the processor memory hierarchy,
including multiple levels of cache on processors, data that has been
created within B-APM using PMDK may not actually have been
stored on the B-APM hardware at a particular point in time. When
created and operated on, it stays within processor caches until
evicted or otherwise flushed back to the B-APM. Some Intel systems
provide some automatic flushing guarantees for B-APM, using ADR
(Asynchronous DRAM Refresh) and eADR (extended Asynchronous
DRAM Refresh) [1].

ADR utilises power supply functionality that can signal potential
power loss events to the system with sufficient time that the latent
power left within the system can be used to write back any data that
is resting in the write pending queues on the processor’s memory
controller. This enables writes that are scheduled to be guaranteed
once the memory controller has them, but puts significant respon-
sibilities on programmers to ensure that updates are flushed in the
correct order and time period to ensure they will be guaranteed to
make it to the B-APM even if power is lost.

eADR extends this functionality to include the processor caches
as well as the memory controller write queues, relaxing the consis-
tency constraints imposed on programmers. With eADR any data
still resident on the processor in a modified form will be flushed
back to the B-APM when a power failure event is detected.

ADR and eADR have been developed to overcome a performance
issue associated with programming Optane B-APM, namely the cost
of ensuring data is persisted to the memory hardware. As standard
programming memory operations do not consider the persistent
nature of B-APM, i.e. they were designed with volatile memory in
mind, there is no automatic mechanism for ensuring data has left
the processor cache hierarchy and been updated on the non-volatile
memory. PMDK provides a set of function call to do this, which
enable a range of memory to be persisted to the B-APM, and ensure
that after the function call has completed the data is persistently
stored. These functions use processor instructions such as CLWB,

Evaluating the latest Optane memory: A glorious swansong?

Table 2: STREAM bandwidths using first generation Optane
memory with varying persist function call placements

Persist Copy Scale Add Triadd
(GB/s) (GB/s) (GB/s) (GB/s)

No persist calls 15.5 15.1 21.2 214

Location

Persist call at 13.9 13.9 19.7 19.7
the end
Persist call after 0.88 0.93 1.3 14

each operation

CLFLUSH, or MFENCE, to flush data out of caches and automatically
ensure they end up at the Optane memory.

However, as they remove data from cache and wait until the data
has reached the B-APM controllers on the DIMMs, these can be slow
operations, and can disrupt the performance benefits that caches
provide. Without ADR and eADR, programmers are responsible for
manually adding persist function calls in their code at places that
ensure data consistency should power be lost, but in a manner that
reduces performance as little as possible.

Table 2 outlines the performance impact of different choices in
the persist operation placement on the STREAM benchmark [7]
utilising first generation Optane memory. We would note that the
STREAM benchmark does not necessarily show the full perfor-
mance impact of such operations as STREAM does not significantly
reuse data within caches. The benchmark was run on a dual proces-
sor node with 24 core and 1.5TB of first generation Optane memory
per processor.

Clearly, eADR functionality simplifies these programming con-
straints and is a big step towards improving performance for pro-
grams exploiting Optane memory. However, it requires this hard-
ware functionality to be present in the systems hosting the Optane
memory, both at the power support/systemboard level, and within
the processor memory controller.

Had Optane not been discontinued by Intel, it is likely this would
have become the de facto configuration for systems hosting Optane
memory, however at present it cannot be guaranteed, so applica-
tion development to safely exploit Optane memory still requires
functionality to manually persist memory at points that ensure data
consistency should a power loss occur whilst having a minimal
impact on memory performance.

4 RELATED WORK

There has been a range of work looking at the performance of
Optane memory since it debuted. [8] benchmarked a range of ap-
plications on first generation Optane memory, demonstrating im-
provements across all benchmarks when compared to standard
I/O devices, but only modest performance improvements when
integrated in scientific applications.

In [10], the authors propose system architectures to exploit first
generation Optane memory and integrate this into HPC system ar-
chitectures. They primarily focussed on using Optane for I/O, i.e. as
a storage target, but demonstrated good performance improvements
for large computational workflows and for applications utilising

Optane in compute nodes for temporary storage. They also high-
lighted the work required to integrate such local storage into a
shared computing environment.

The DAOS storage system [6] has shown the potential to lever-
aging Optane memory for small I/O operations, developing a persis-
tent object storage system that has shown very high performance
(including topping the 10500 list a number of times) by holding
metadata and other small data objects within Optane memory. They
have recently started the process of transitioning from Optane to
DRAM for these operations [4], in absence of continued Optane
product lines, but acknowledge that this will have performance
impacts on DAOS for some usage scenarios.

Others have also investigated exploiting Optane for specific
applications using prefetching, data placement, and customised
persistent windows [9]. These have demonstrated that such hierar-
chical memory configurations can bring benefits over automatic
or simplistic data placement approaches, but fall short of showing
overall performance or system configuration benefits for applica-
tions through using hierarchical memory in general.

In this paper we investigate both I/O and memory performance
for Optane, demonstrating the benefits in utilising this memory
in both scenarios. We also explore the overall system benefits that
using a hierarchical memory structure can provide. We provide
details on how to program Optane memory from applications, as
well as presenting, to the best of our knowledge, the first evaluations
of third generation Optane memory performance for a range of
benchmarks.

5 EVALUATION

We have used a range of benchmarks and approaches to evaluate
the performance of Optane memory, both as an I/O device and
as memory. Two different resources were used to benchmarking
Optane memory, the first being a system that has dual socket Intel
Xeon Platinum 8260M Cascade Lake processors, with 192GB of
DDR4-2666 volatile memory, and 3TB of Optane series 100 memory.
The second system has a single socket of Intel Xeon Platinum
8468 (Sapphire Rapids) with 48 cores, 128GB of DDR5-4800 volatile
memory, and 2TB of Optane series 300 memory. Both systems used
the Intel compilers (OneAPI versions), along with the Intel MPI
library where required.

5.1 I/0 Performance

To evaluate I/O performance we have utilised two distinct bench-
marks. The first is the standard IOR benchmark [5], that measures
bulk I/O performance in a variety of operation modes. We ran IOR
on a single node of both systems we have access to, using the IOR
easy node (i.e. single file per process), for a range of different I/O
operation sizes (transfer size), writing a total of 2GB of data per
process, or 96GB of data for a full node using 48 processes.

We ran two configurations of IOR, one using the POSIX file
interface with the Optane memory mounted as an f'sdax filesystem,
the other using the PMDK library to write data directly as memory
operations. Both of these use integrated IOR I/O providers, and
have the same setup except for the I/O provider used. We tested I/O
operations from 256-bytes, up to 16 MB, with the results for both
read and write bandwidth shown in Figures 1 and 2

I0R Easy Read Bandwidth using fsdax on one node varying block sizes

w256 bytes
701 mem 512 bytes
= 1kb
—2kb
c0] == akp
8kb
16 kb

—32kb
501 w64 kb
128 kb
- 256 kb
512 kb
= 1mb

2mb

4mb.
301 = 8mb
16 mb

Bandwidth (GiB/s)

Jackson, A.

10R Easy Write Bandwidth using fsdax on one node varying block sizes

w256 bytes
12{ == 512 bytes
—1kb
—2kb
kb

10 8kb

16 kb

—32kb
64 kb
128 kb
256 kb
 512kb
= 1mb
2mb
amb
g mb
16 mb

Bandwidth (GiB/s)

Figure 1: IOR Bandwidth using fsdax filesystem on a single node with third generation Optane

10R Easy Read Bandwidth using pmdk on one node varying block sizes

w256 bytes
w512 bytes
- 1kb
—2kb
—4kb

8kb

16 kb
—32kb
64 kb
w128 kb
w256 kb
w512 kb
= 1mb

2mb

4mb
8 mb
16 mb

Bandwidth (GiB/s)

I0R Easy Write Bandwidth using pmdk on one node varying block sizes

256 bytes
w512 bytes
kb
—2kb
4 kb

8kb

16 kb
—32kb
-4 kb
128 kb
256 kb
512 kb
= 1mb

2mb

amb,
e 8mb
w16 mb

Bandwidth (GiB/s)

Figure 2: IOR Bandwidth using the PMDK library on a single node with third generation Optane

What is evident from the results presented is that both mecha-
nisms for accessing the non-volatile storage that Optane provides,
i.e. either as a filesystem or as memory, can provide high perfor-
mance at large I/O operation sizes. We can see around 70GB/s of
read bandwidth and 12GB/s of write bandwidth for both PMDK and
fsdax, with PMDK providing slightly higher read performance for
some transfer sizes (i.e. up to 80GB/s), and fsdax providing slightly
higher write performance (just over 12GB/s).

We can also see the strong asymmetry of performance between
read and write for Optane memory, with write bandwidth around
six times lower than read bandwidth for the maximum achieved
performances. However, the main performance result these figures
illustrate is the different performance the interfaces give for small
I/O operations. We can observe that using the B-APM as memory
(i.e. through the PMDK interface) we see little to no reduction
in performance for undertaking small data movements, both for
reading and writing data. Indeed, the PMDK interface gives the best
performance for writing at small data sizes, with a small loss of
performance observed when scaling up to large I/O operations. This
is likely to do with the sharing of the memory hardware between
cores and saturation of the memory controller write queues on the
Optane devices themselves when using larger I/O operation sizes.

We see very similar performance when undertaking the same
benchmarks on first generation Optane memory, as highlighted
in Figures 3 and 4. Similar I/O performance patterns are evident
for this older Optane hardware, with traditional filesystem access
requiring larger I/O operation sizes to get good sustained perfor-
mance, and PMDK providing as good or better performance for
small I/O operations compared to larger I/O operations.

We can also see that the newer Optane (the third generation
hardware) provides improve performance for write, for filesystem
operations (12GB/s vs 9GB/s) and better performance for large mem-
ory write operations (i.e. PMDK, ~11GB/s vs ~9GB/s). However, we
do not see a significant improvement in peak writing performance
for these configurations for the newer version of Optane memory.
It could be that this is due to the mode of operations IOR is running
in, i.e. 48 processes per node, with high levels of contention for the
Optane memory.

On the read side, again, performance is improved for smaller I/O
operations for filesystem interfaces, with good read performance
sustained down to 8KB transfers on fsdax. Better read performance
is also observed for larger transfer sizes (i.e. 2MB+) for the fsdax
interface with this newer Optane memory. Similar trends can be
seen for the PMDK interface on third generation Optane, with

Evaluating the latest Optane memory: A glorious swansong?

I0R Easy Read using fsdax on one node varying block sizes

80 | mmm 128 bytes
256 bytes
w512 bytes
70 { W= 1kb
w2k
akb
60 8kb
16 kb
—32kb
50| == 64kb
128 kb
256 kb
512 kb
1mb

Bandwidth (GB/s)

2mb.
= 4mb
= g mb
16 mb

1
Nodes

I0R Easy Write Bandwidth using fsdax on one node varying block sizes

128 bytes
256 bytes
== 512 bytes
g W 1kb
e 2kb
akb
8kb
—16kb
—32kb
64 kb
128 kb

o

256 kb
e 512kb
1mb

I8

2mb
4 mb
g mb
16 mb

Bandwidth (GB/s)

1
Nodes

Figure 3: IOR Bandwidth using fsdax filesystem on a single node with first generation Optane

I0R Easy Read using pmdk on one node varying block sizes

128 bytes
70 256 bytes
= 512 bytes

Bandwidth (GB/s)

Nodes

I0R Easy Write Bandwidth using pmdk on one node varying block sizes

128 bytes
256 bytes
= 512 bytes
—1kb
e 2kb

akb

8kb
16 kb

Bandwidth (GB/s)

Figure 4: IOR Bandwidth using the PMDK library on a single node with first generation Optane

sustained read performance being maintained up to 2MB transfer
sizes, whereas this dropped off significantly at 128KB transfer sizes
for first generation Optane.

The second I/O benchmark we used was MADBench2 [3], a
synthetic I/O benchmark designed to mimic application I/O from
a large-scale cosmic microwave background (CMB) data analysis
package. This has more small and varied I/O operations, and mimics
out-of-core or out-of-memory style operations (where the dataset
is too large to be stored in volatile memory, so it kept in storage
and processed in chunks as required). This is an ideal benchmark
to assess Optane memory usage for I/O because it enables active
evaluation of a hierarchical memory configuration, emulating the
situation where a larger dataset is stored in slower but larger mem-
ory and the active part is hosted in the faster, volatile, memory.

As implemented, MADBenchz? uses files to store the out-of-core
data, so we extended this benchmark to utilise PMDK and thereby
store the out-of-core data in Optane memory instead. This func-
tionality, which we could classify as out-of-volatile data, enabled
us to benchmark Optane through PMDK vs Optane through fsdax,
and explore how I/O vs memory operations affect performance for
such situations. We also modified the MADBench2 benchmark to

allow out-of-volatile data to be done at a range of block sizes, rather
than the single fixed block size originally implemented.

As Figure 5 shows, the performance comparison between fsdax
filesystem accesses and PMDK memory accesses for MADBench2.
The two graphs show the same results, except the graph on the left
has excluded the very slow results (Original(Blocked:8)) to make
the performance of the rest of the results more visible. The error
bars on the graph show the range of variation in performance for
the benchmark (each benchmark was repeated 5 times, with the
bars show the mean duration).

We can see that the benchmark on fsdax gives similar, if not
quite as fast, performance as PMDK memory accesses in most
cases. The blocking of the dataset to a finer granularity has no
performance impact for the PMDK implementation, mirroring the
results previously seen with IOR. Blocking for the filesystem brings
some small performance benefits for large size blocks (the standard
block size is 128 elements in each dimension), but brings very
significant performance reduction for small block sizes (8 elements
in each dimension).

This succinctly demonstrates the potential for B-APM like Op-
tane to provide a hierarchical memory structure that can enable

Jackson, A.

dj | e

Runtime (s)

Original
PMDK -
PMDK(Blocked:8) -

original(Blocked) 4
PMDK(Blocked)

500

IS

o

S
.

300 4

Runtime (s)

N

o

53
!

100 4

Original 4 H
PMDK + I

original(Blocked) I
PMDK(Blocked) { |

original(Blocked:8) {
PMDK(Blocked:8)

Figure 5: MADBench?2 performance on third generation Optane

reduced volatile memory capacity whilst still maintaining perfor-
mance compared to storing large amounts of active data in volatile
memory. However, we can see in this configuration, we’re required
to move away from out-of-volatile functionality being an I/O im-
plementation and towards it being memory-based to enable such
functionality to be efficiently utilised.

5.2 Memory

We have already discussed some memory style benchmarking of
Optane, both in the introductory sections, where we introduced the
performance of first generation Optane, and in the MADBench2
benchmarking.

As part of evaluating the third generation of Optane memory, we
have run the STREAM memory bandwidth benchmark on that hard-
ware, and present the results in Table 3. These results show a good
improvement in memory bandwidth compared to the equivalent
first generation benchmark results, with an aggregate bandwidth
of between 24 and 28GB/s depending on the specific benchmark
been undertaken (all the data in B-APM). This is a performance
improvement of between 25-35%, and is even slightly higher than
the DRAM performance improvements we see between the two
systems used (DDR4-2666 to DDR5-4800).

The results also show that the latest Optane does not suffer a
performance overhead for minimal persist operations (i.e. there
is no significant performance difference between not persisting
data and persisting it at the end of the benchmark). This is an
improvement over the first generation Optane results. Furthermore,
the results for high levels of persistent operations (persist call after
each operation) also show significant improvements, with a ~3x
increase in bandwidth.

This demonstrates the improvements that have been achieved
through the new generations of Optane memory, reducing some
of the overheads with persisting data to the memory hardware,
sustaining performance under contention, and generally improving
the read and write performance of the memory.

We have also run two benchmarks that mimic application ker-
nels on the Optane memory, evaluating the performance impact
and/or benefits of porting applications to a multi-tiered memory

Table 3: STREAM bandwidths with varying locations and
persistent horizons used for reading and writing data on
Third Generation Optane

Memory Location Copy Scale Add Triadd
(persist horizon) (GB/s) (GB/s) (GB/s) (GB/s)
All in DRAM 172 172 187 186

Read data in Optane 135 135 112 112
Write data in DRAM

Read data in DRAM 29 29 41 41
Write data in Optane

All in Optane 23 24 28 28
(no persist)

All in Optane 23 23 28 28
(persist at end)

All in Optane 3 3 4 4

(persist each write)

configuration and using B-APM for part or all of the data used by
an application.

The first benchmark, sharpen, is an edge detection kernel that
sharpens an image by convolving the source image with a filter
function. The convolution filter consists of both a simple denois-
ing step using a Gaussian operator, and a Laplacian operator that
generates edges from the input pixels using a second order deriva-
tive. These are discretised using standard n-sized stencil across a
two dimensional data structure, with a range of arrays storing the
original image, the updated image, and the convolutional filter. The
application is parallelised with MPI enabling scaling to multiple
nodes, and thereby to large image sizes.

The second benchmark, cfd, is an idealised computational fluid
dynamics kernel, implementing a fluid flow simulation in a 2d box,
with a single inlet and a single outflow. The program calculates the
velocity and vorticity of the flow using finite viscosity, with a basic
Jacobi discretisation, again using an n-sized stencil. As with the
sharpen application, this has been parallelised with MPI and can
scale up to large numbers of processes and thereby simulate large
domains.

Evaluating the latest Optane memory: A glorious swansong?

Table 4: Performance of applications ported to Optane mem-
ory

Application Hardware Runtime Volatile Memory
(seconds) (GB)
sharpen DRAM 56 285
DRAM+B-APM 63 170
cfd DRAM 7.95 40
DRAM+B-APM 9.64 25

Table 5: Performance of the CFD application

Persistency Hardware Runtime Volatile Memory
Horizon (seconds) (GB)

N/A DRAM 7.95 40

No persist DRAM+B-APM 9.64 25
Partial persist DRAM+B-APM 10.67 25

Full persist DRAM+B-APM 41.84 2

Both of these applications have a number of large arrays storing
the input data and the data used for calculations during the execu-
tion of the program. When porting to utilise B-APM, the challenge
is in deciding which arrays to implement on the B-APM and which
to leave in volatile memory. Both applications have large arrays
that are utilised to hold the source data for the simulation, but are
not updated after initialisation. We chose to port these arrays to
B-APM using PMDK functionality, and to leave the data that is
frequently updated in volatile memory.

For the sharpen benchmark, we can demonstrate performance of
around 5% less for a reduction in around half the required volatile
memory. Likewise, for the cfd application, we are able to reduce the
amount of memory required by around half, whilst having only a
small impact on the overall performance of the program, as outlined
in Table 4

We also investigated the cfd benchmark in more detail, with
results outlined in Table 5. Here we investigated different persistent
horizons, from no persist calls at all, through to persisting every data
write. As reflected in the STREAM benchmark results, high volumes
of persist calls significantly impact performance, but less frequent
persistence calls have minimal impact on the overall application
performance whilst still maintaining sensible levels of application
coherency.

We can also see that moving to a full persistence model it is
possible to reduce the residence set size required for the application,
from 40 or 25GB down to 2GB. This involves only holding part of
the active data in volatile memory at any one time, and swapping
those active parts as the simulation iteration progresses. Whilst
this had a ~4 fold reduction in performance, it did enable a 20 fold
reduction in volatile memory requirements.

6 SUMMARY AND FUTURE WORK

We have evaluated the latest, and last, generation of Optane mem-
ory, and demonstrated that it bring improved functionality and
better performance in some scenarios, although the performance

is in line with the performance improvements expected for new
generations of any memory technology.

We demonstrated the unique role Optane had the potential to
play in computing architectures, that of enabling very small I/O
operations with the same performance as bulk streaming I/O. This
could have opened up new computing architectures, with signifi-
cantly smaller volatile memory footprints, and a hierarchy of mem-
ory that could be exploited by applications designed to be aware of
that hierarchy and how to efficiently exploit it. Reducing volatile
memory would in turn allow for the reduction of both energy
and power requirements for computing systems, thereby enabling
denser, more efficient hardware configurations.

B-APM coupled with on-processor high bandwidth memory
could have enabled the complete removal of DRAM whilst still
retaining significant memory capacity. One architecture that has
already removed in-node DRAM is the A64FX processor in the
Fugaku system, where each processor has high bandwidth memory
on chip but no associated DRAM. This has helped build one of the
largest supercomputers in the world, but does mean that applica-
tions that require large amounts of memory per process necessarily
have to scale up to large numbers of nodes (and potentially un-
derpopulate those nodes) to be able to run. A well structured and
programmed B-APM capacity within compute nodes would negate
these issues.

With the cancellation of Optane, the proposed replacement tech-
nology is composable infrastructures, such as those exploiting the
CXL architecture, which allow the attachment of non-volatile re-
source across networks transparently. CXL enable memory and
storage targets to be defined, potentially replacing the persist mem-
ory that Optane provided. However, whilst high bandwidth and
low latency CXL hard will become available, because of the mecha-
nism for connecting composable resources (i.e. across some form
of network), it will not match the byte-addressable, and therefore
the small operation, performance and functionality that Optane
provides.

Nevertheless, there is clearly scope to explore out-of-volatile
implementations on composable hardware to map out the perfor-
mance that is possible and the types of programs or algorithms
that will be able to efficiently exploit them, and the benchmarks we
have developed and deployed during this research will provide a
good starting point for that research.

ACKNOWLEDGMENTS

Benchmarking results on first generation Optane hardware in this
paper were run on the NEXTGenlO system, funded by the European
Union’s Horizon 2020 Research and Innovation programme under
Grant Agreement no. 671951. Third generation Optane benchmark-
ing was undertaken on the Tsukuba University Pegasus system,
https://www.ccs.tsukuba.ac.jp/eng/supercomputers/, provided un-
der collaboration between CCS, University of Tsukuba and EPCC,
University of Edinburgh. Some of the research in this paper was
supported by UKRI, through EPSRC grant EP/T028351/1.

REFERENCES

[1] 2023. Extended Asynchronous Dram Refresh. Retrieved August 20, 2023
from https://www.intel.com/content/www/us/en/developer/articles/technical/
eadr-new-opportunities-for-persistent-memory-applications.html

https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html

3

[4

=

o

=

2023. Persistent Memory Development Kit.
http://pmem.io/pmdk/

Julian Borrill, Leonid Oliker, John Shalf, Hongzhang Shan, and Andrew Uselton.
2009. HPC global file system performance analysis using a scientific-application
derived benchmark. Parallel Comput. 35, 6 (2009), 358-373. https://doi.org/10.
1016/j.parco.2009.02.002

Michael Hennecke, Jeff Olivier, Tom Nabarro, Liang Zhen, Yawei Niu, Shilong
Wang, and Xuezhao Liu. 2023. DAOS Beyond Persistent Memory: Architecture
and Initial Performance Results. In High Performance Computing, Amanda Bienz,
Michele Weiland, Marc Baboulin, and Carola Kruse (Eds.). Springer Nature
Switzerland, Cham, 353-365.

Julian Kunkel, Glenn K. Lockwood, Mohamad Chaarawi, Christopher J. Morrone,
Jean-Yves VET, otatebe, shanedsnyder, Rob Latham, Adrian Jackson, Wei keng
Liao, Jeff Inman, Brett Kettering, Enno Zickler, jschwartz cray, Axel Huebl,
Mark Nelson, Nathan Hjelm, Pablo Llopis, VinsonLeung, Christian Wassermann,
Blair Crossman, adilger, Pidad D’Souza, Sylvain Didelot, jhendersonHDF, Adam
Moody, Alfred Torrez, JI| 5 FiIEtSE, John Bent, and Oliver Steffen. 2023. hpc/ior:
IOR version 4.0.0 release candidate 1. https://doi.org/10.5281/zenodo.7662913
Zhen Liang, Johann Lombardi, Mohamad Chaarawi, and Michael Hennecke. 2020.
DAOS: A Scale-Out High Performance Storage Stack for Storage Class Memory.
40-54. https://doi.org/10.1007/978-3-030-48842-0_3

Retrieved August 20, 2023 from

7

8

[10

]

Jackson, A.

John D. McCalpin. 1995. Memory Bandwidth and Machine Balance in Current
High Performance Computers. IEEE Computer Society Technical Committee on
Computer Architecture (TCCA) Newsletter (Dec. 1995), 19-25.

Vladimir Mironov, Igor Chernykh, Igor Kulikov, Alexander Moskovsky, Evgeny
Epifanovsky, and Andrey Kudryavtsev. 2019. Performance Evaluation of the Intel
Optane DC Memory With Scientific Benchmarks. In 2019 IEEE/ACM Workshop
on Memory Centric High Performance Computing (MCHPC). 1-6. https://doi.org/
10.1109/MCHPC49590.2019.00008

Jie Ren, Jiaolin Luo, Ivy Peng, Kai Wu, and Dong Li. 2021. Optimizing Large-
Scale Plasma Simulations on Persistent Memory-Based Heterogeneous Memory
with Effective Data Placement across Memory Hierarchy. In Proceedings of the
ACM International Conference on Supercomputing (Virtual Event, USA) (ICS 21).
Association for Computing Machinery, New York, NY, USA, 203-214. https:
//doi.org/10.1145/3447818.3460356

Michele Weiland, Holger Brunst, Tiago Quintino, Nick Johnson, Olivier Iffrig,
Simon Smart, Christian Herold, Antonino Bonanni, Adrian Jackson, and Mark
Parsons. 2019. An Early Evaluation of Intel’s Optane DC Persistent Mem-
ory Module and Its Impact on High-Performance Scientific Applications. In
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (Denver, Colorado) (SC ’19). Association for
Computing Machinery, New York, NY, USA, Article 76, 19 pages. https:
//doi.org/10.1145/3295500.3356159

http://pmem.io/pmdk/
https://doi.org/10.1016/j.parco.2009.02.002
https://doi.org/10.1016/j.parco.2009.02.002
https://doi.org/10.5281/zenodo.7662913
https://doi.org/10.1007/978-3-030-48842-0_3
https://doi.org/10.1109/MCHPC49590.2019.00008
https://doi.org/10.1109/MCHPC49590.2019.00008
https://doi.org/10.1145/3447818.3460356
https://doi.org/10.1145/3447818.3460356
https://doi.org/10.1145/3295500.3356159
https://doi.org/10.1145/3295500.3356159

	Abstract
	1 Introduction
	2 Optane Memory
	3 Programming Optane Memory
	4 Related Work
	5 Evaluation
	5.1 I/O Performance
	5.2 Memory

	6 Summary and Future Work
	Acknowledgments
	References

