

Mark Hildebrand, Jason Lowe-Power, Venkatesh Akella jlowepower@ucdavis.edu

Summary

Working memory sizes growing

Heterogeneous memory devices needed to keep up

Current data movement strategies are limited

High overheads, inflexible, missing important optimizations

CachedArrays: Separate the mechanisms and policies Simple interface for programmers Flexible backend for framework developers

Prototype in software showing efficiency for CNNs and DLRM

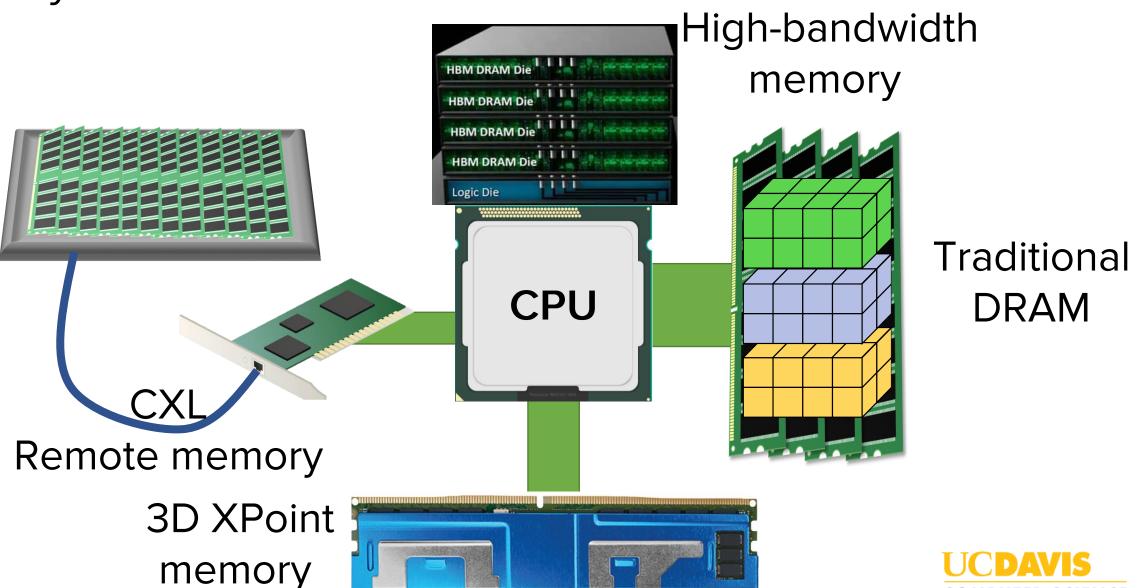
Memory requirements are growing

Not just deep learning
Graph analytics:
billions of vertices
trillions of edges

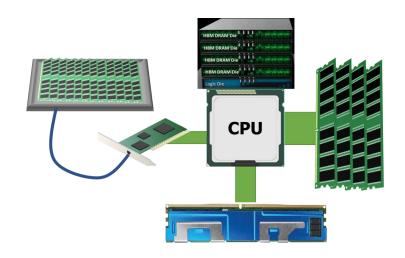
Working memory
Byte addressable
Low latency
High bandwidth

COMPUTER SCIENCE

System architecture

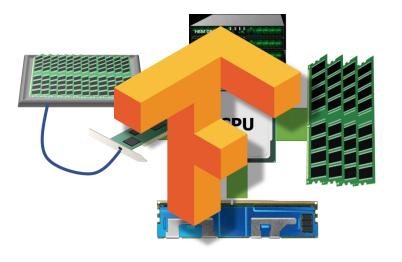


Why conventional techniques don't work



CachedArrays

A solution to bridge the semantic gap



Conventional data movement

Why not just treat faster memory as a cache?

Caches have been great!

Block-level

Programmer transparent

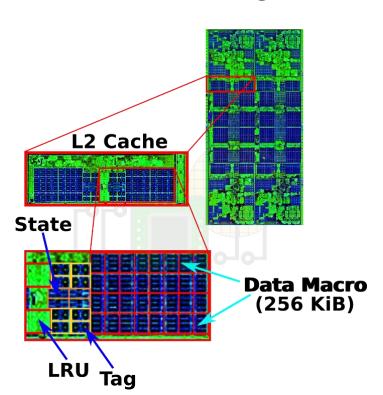
Traditionally, low overhead

DRAM has some issues, though...

Difference between SRAM & DRAM

In SRAM caches:

Tag, LRU, etc. in different structure. High bandwidth



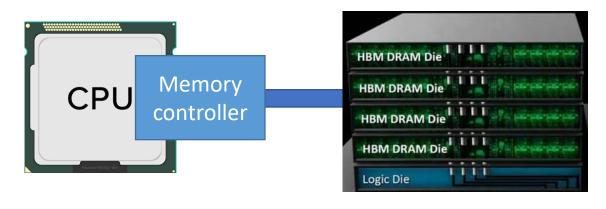
In DRAM caches:

Off-chip

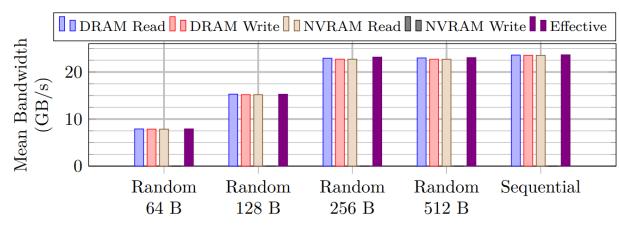
Tag, LRU, etc. share bus with data

Lower bandwidth

Higher latency



Results: Microbenchmarks on hardware



Each read requires **3** accesses

(a) Read-only benchmark, clean LLC read misses, 24 threads.

Each write requires **5** accesses

Option 2: Operating system paging

Many, many examples of "NUMA-style" data movement

Three problems

Data movement granularity is 4 KiB or 2 MiB pages

Timeliness of movement: Policy doesn't have insight into dynamic access

Policy has no information on semantics of data use

OK for some workloads (e.g., cloud/VM) Inefficient for many others

Requirements for efficient data movement

Transparent to the programmer (Mostly)

Hints are OK

Library (e.g., PyTorch) changes OK

Semantic information of data use to drive movement Sage, vDNN, AutoTM, ZeRO-Offload, etc.

Important optimizations

- 1. Initial access data placement in fast memory
- 2. Elide dead data writebacks
- 3. Move data at *right* granularity
- 4. Avoid polluting fast memory

CachedArrays API for data movement

Exposes the following *hints* to the programmer/library developer

Use *object* granularity. Not page, block, etc.

will_use I am going to read and/or write this object

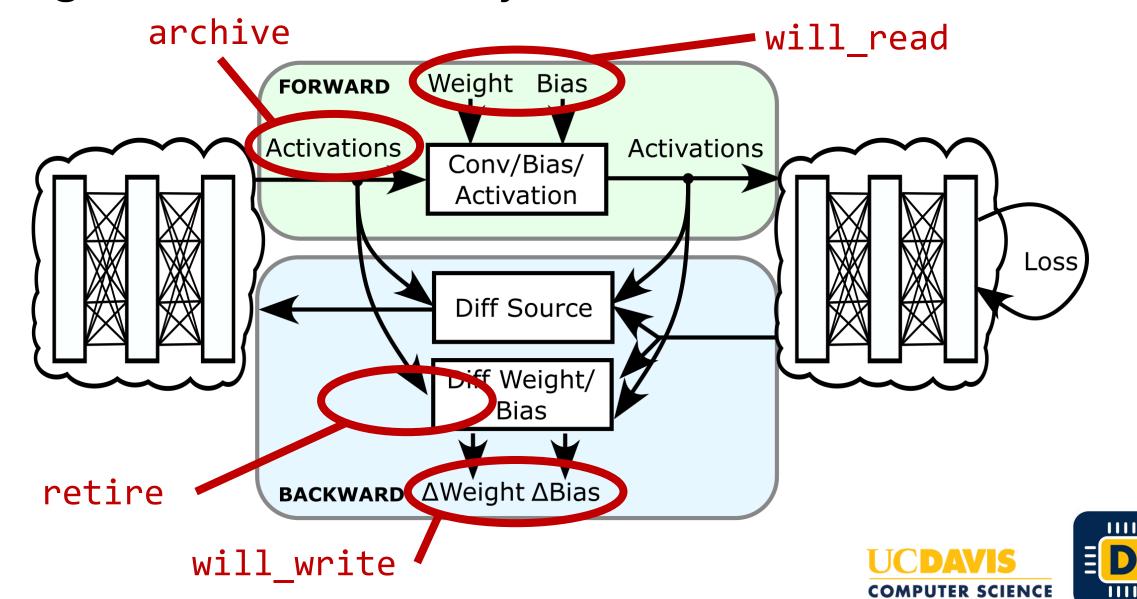
will_read I am going to access object read-only

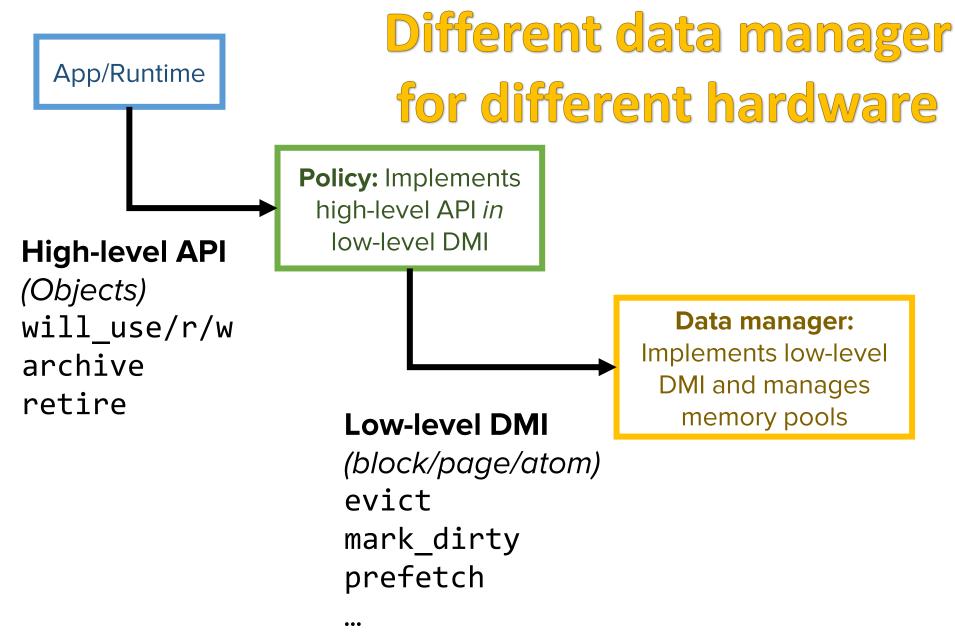
will_write | I am going to write and/or read this object

archive I am not going to use this object for a while

retire I am never going to access this object again

Using the CachedArrays API for CNNs

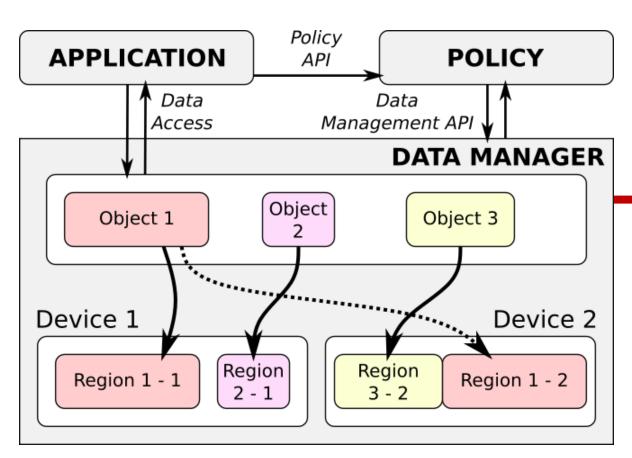




Fast memory

Slow memory

Example of low-level DMI



```
function prefetch(
  policy, object, force::Bool = false)
 x = DM.getprimary(object)
  if DM.in(x, SLOW)
   sz = DM.sizeof(object)
   y = DM.allocate(FAST, sz)
   if isnothing(y) && force
     start = find_region(policy)
     DM.evictfrom(FAST, start, sz) do region
       evict(policy, DM.parent(region))
     end
     y = DM.allocate(FAST, sz)::Region
   else if isnothing(y) && !force
     return
   end
   DM.copyto(y, x)
   DM.link(x, y)
   DM.setprimary(object, y)
                                         1111
  end
  return
```

end

COMPUTER SCIENCE

Evaluation platform

Optane and DRAM share bus

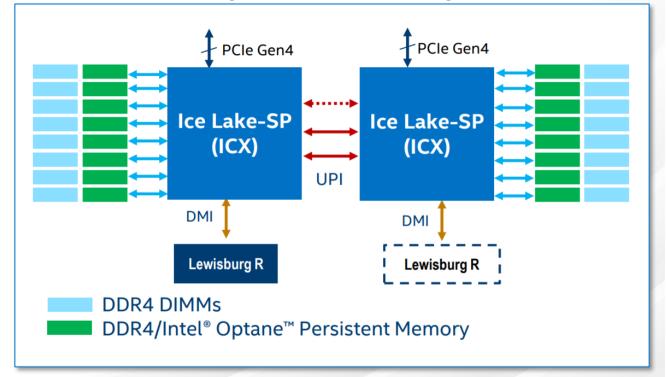
Optane DIMMs: >512GB

DRAM DIMMs: >64-128GB

Total memory per node: 3-4TB Optane 384-512GB DRAM (SRAM <64MB)

Compare to DRAM Cache (2LM)

Whitley 2-socket System



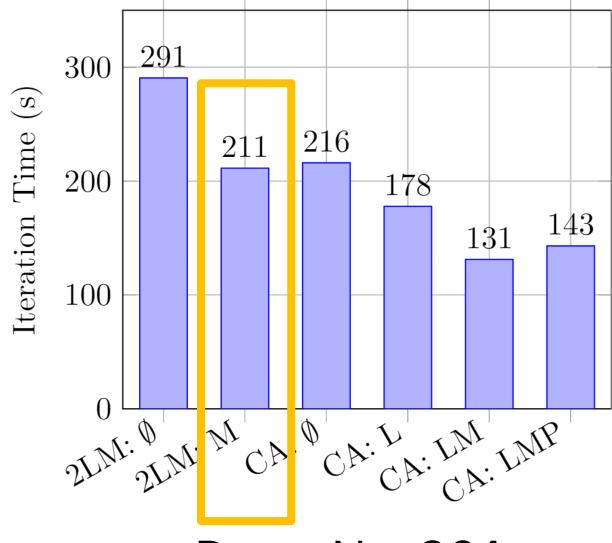
Large Networks			Small Networks	
Model	Batchsize	Footprint	Model	Batchsize
DenseNet 264	1536	526 GB	DenseNet 264	504
ResNet 200	2048	529 GB	ResNet 200	640
VGG 416	256	520 GB	VGG 116	320

Results for DNNs

Three optimizations:

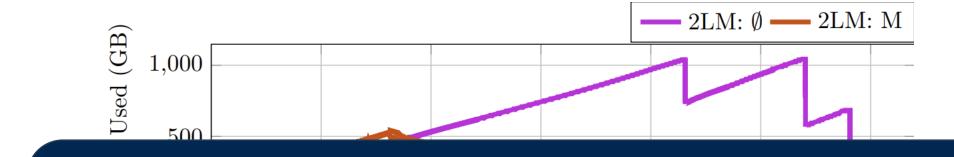
Memory freeing (M) retire

Allow local accesses (L) Prefetching (P)



DenseNet 264

Benefits of retire (memory freeing)



Take away: Adding semantic information about memory use improves efficiency

Reu

Memory reclaimed at lower cost

Results for DNNs

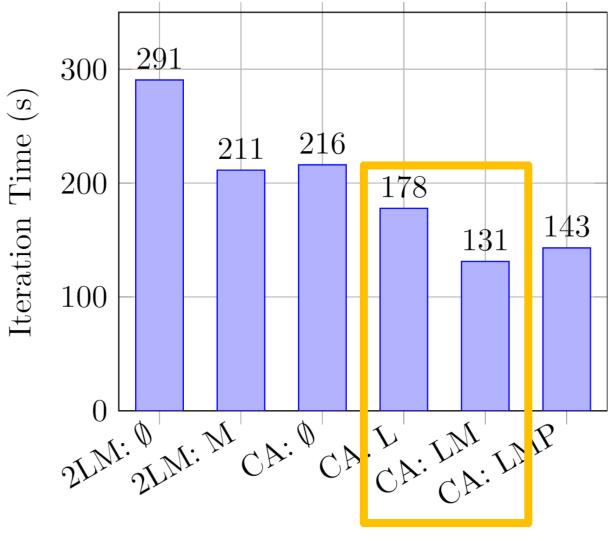
Three optimizations:

Memory freeing (M)

retire

Allow local accesses (L)

Prefetching (P)



DenseNet 264

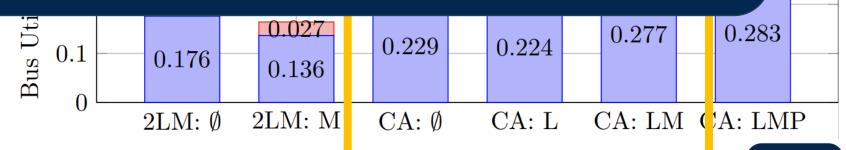
Data placement and object-based movement

Placing data in fast/local (a) 8 memory reduces movement

Take away: Smart data placement and movement reduces movement and increases efficiency

Us

movement improves efficiency



UCDAVIS COMPUTER SCIENCE

Results for DNNs

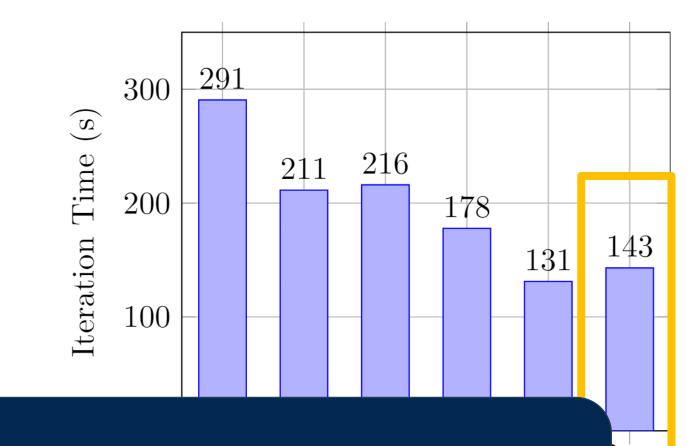
Three optimizations:

Memory freeing (M)

retire

Allow local accesses (L)

Prefetching (P)

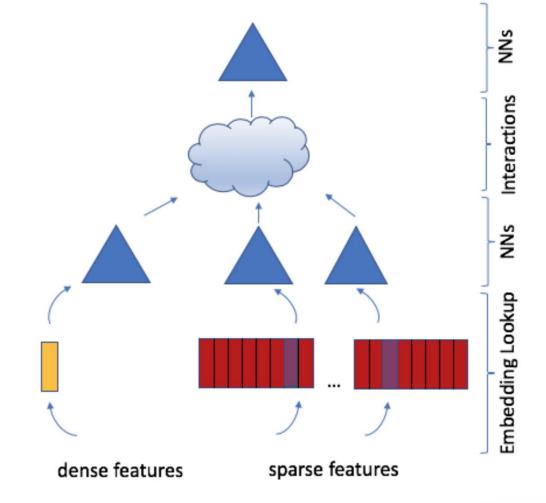


Take away: Prefetching doesn't always help. Flexibility is required

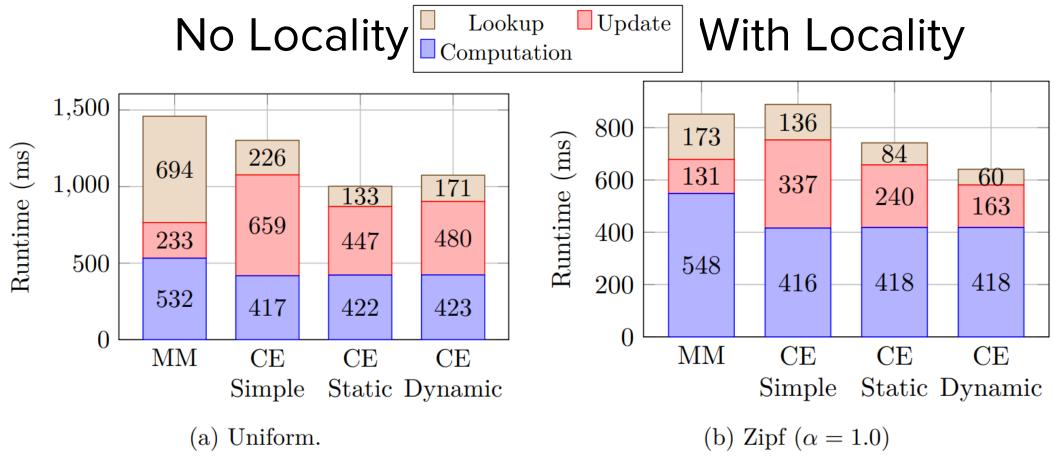
Results for DLRM (sparse accesses)

DLRM: Deep learning recommendation model

Very large embedding tables which are sparsely accessed



Results for DLRM (sparse accesses)



Future work

Apply ideas to remote memory

Compute Express Link TM Implement in PyTorch instead of Julia O PyTorch

Hardware support and acceleration

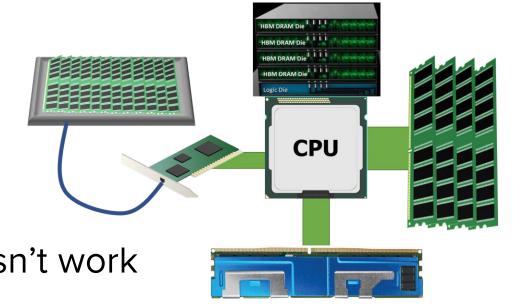
Conclusions

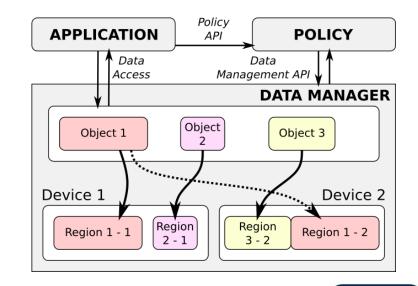
Memory systems are heterogeneous

Naively applying yesterday's solutions doesn't work

Hardware-software co-design is the future
Involving the program, not the programmer
Co-design data movement and placement

Just the first step: Many optimizations possible!





Why AutoTM wins Or, why DRAM caches lose

- 1. DRAM cache is direct-mapped
 - Misses miss for no good reason
 - "Conflict" misses, but increasing associativity is hard

- 2. Bandwidth is poorly utilized on misses
 - Extra accesses
 - Traffic is poorly "shaped"
- 3. AutoTM can skip dead writebacks
 - Temporary data that will be written before it is read

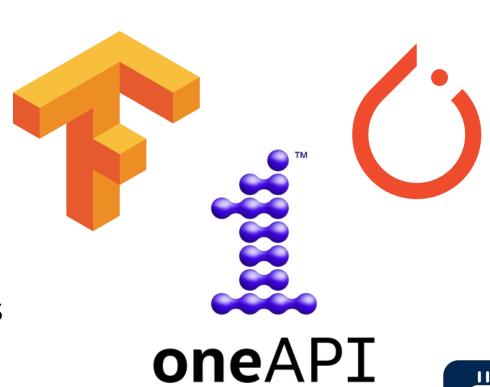
Software to the rescue

Key idea: "programmers" know a lot about their workloads

Read: compilers, runtimes, experts...

Hardware-managed caches suffer from frequent inefficient management fine-grained unpredictable accesses

Programs operate on **objects**Can exploit statically **predictable** accesses



AutoTM

Goal: Minimize Execution Time

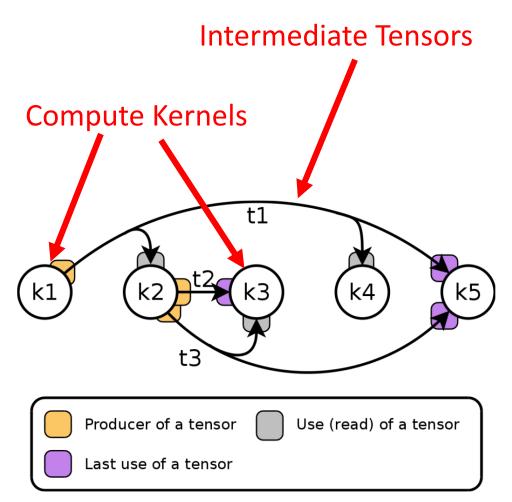
- Arbitrary computation graph.
- Size constraint on fast memory.

How

- Place tensors in fast or slow memory.
- Optimal tensor movement.

Strategy

- Profile kernel performance
- Model tensor assignment as ILP



Experiments!

Software

- Modified the ngraph¹ compiler.
- Julia's *JuMP*² package for ILP modeling.
- Gurobi³ as the ILP solver.

Hardware

- 1.5 TB OptaneTM DC PMM
- 384 GiB DRAM

Workloads ———

Conventional	Batchsize	Memory (GB)
Inception v4	1024	111
Vgg 19	2048	143
Resnet 200	512	132
DenseNet 264	512	115

Large	Batchsize	Memory (GB)
Inception v4	6144	659
Vgg 416	128	658
Resnet 200	2560	651
DenseNet 264	3072	688

Perf compared to DRAM Cache Up to 3x performance over hardware cache!

static-AutoTM sync-AutoTM 3 Speedup over 2LM Higher is Better $\begin{array}{c} \rm Vgg416~(320) \\ \rm Inception~v4~(6144) \\ \rm Resnet200~(2560) \\ \rm DenseNet~264~(3072) \end{array}$

