
Persistent Snapshot Isolation
with Unlimited Reads on

Hardware Transactional Memory
Alexandro Baldassin, João Barreto, Daniel Castro,

Miguel Figueiredo, Paolo Romano

HMEM workshop

After the multi-core revolution…
… the persistent memory (PM) revolution

Multi-core CPUs
require

concurrency control

Persistent objects on PM
require

failure atomicity

The transactional memory abstraction
• Concurrency control: important advantages over fine-grained locks
• Failure atomicity: popular abstraction for failure-atomic sections in

PM literature

A persistent memory transaction with PMDK

The promise of hardware transactional memory (HTM)

ACM SIGARCH Computer Architecture News, 1993

Two fundamental obstacles of HTM

• Limited read/write-set capacity
• Transactions that exceed such

capacity are aborted
• Single global lock fallback

• Not failure-atomic
• HTM atomically writes to volatile

CPU caches, not PM
• Use persistent software TM

alternatives instead (e.g. PMDK)

Two successful research avenues

• In recent years, substantial achievements in mitigating each issue
• Insight: we can work around each limitation of an unmodified HTM

implementation by means of software-based extensions

Talk outline

• State-of-the-art on each research avenue
• How can we unify both avenues?

State of the art
on each research avenue
Durable HTM transactions
HTM transactions with unlimited reads

Durable hardware transactions
• Writes to PM also added to a durable redo log (in PM)
• However, we cannot flush redo log entries to PM before the HTM

commits the transaction

Durable hardware transactions with SPHT

•Application writes in a volatile working snapshot

•Logged writes are replayed asynchronously to produce a
consistent persistent snapshot on PM

Replayed via a
background process

Working
Snapshot

logs

Tr
an

sa
ct

io
n Persistent

Snapshot

in volatile RAM in NVM

Replay

[Castro et al., FAST’21]

SPHT: algorithm

TxBegin()

TxCommit()

“Durability commit”
logic implies
expensive

synchronization in
the critical path

Read-only
transactions also

penalized by
durability

State of the art
on each research avenue
Durable HTM transactions
HTM transactions with unlimited reads

Hardware transactions with unlimited reads
with SI-HTM [Filipe et al., PPoPP’19]

• Explores advanced primitives available IBM POWER’s HTM
• Update transactions run in roll-back only transactions (ROT),

which don’t track loads
• Read-only transactions run in no hw transaction

• Unlimited reads …but could lead to consistency anomalies

Waiting to prevent consistency anomalies

Ensures Snapshot Isolation

SI-HTM: algorithm

htm-suspend:
Suspends transactional

access tracking

htm-resume:
resumes transactional

access tracking

Can we combine the state-of-the-art
from both avenues?

Durable
hardware

transactions
(SPHT)

Unlimited
Reads

(SI-HTM)

Can we combine the state-of-the-art
from both avenues?

Durable
hardware

transactions
(SPHT)

Unlimited
Reads

(SI-HTM)

1. Yes, we can combine both solutions
2. Yes, we can efficiently combine both solutions

by deeply rethinking themRe
st

 o
f m

y
ta

lk

Directly stacking SPHT on top of SI-HTM

+
SPHT (durable hw transactions) SI-HTM (unlimited reads)

TxBegin()

TxCommit()

Directly stacking SPHT on top of SI-HTM

HTM executing
the transaction

Software-regulated
“fat” extensions

+22%

+49%

+5%

+37%

Concurrent hash map
on IBM POWER9

16 threads
90% read-only txs

low contention

Persistent Snapshot Isolation
(PSI)

PSI: an efficient combination of durability and
unlimited reads on HTM
3 novel optimizations to reduce the ”software fat” of SPHT+SI-HTM:
1. Opportunistic log flushing
2. Reduced durability wait for read-only transactions
3. Non-transactional logical durability timestamps

Technique #1: Opportunistic log flushing

• Hides the log
flush latency

• No harm as long
as waiting
window is longerIsolation wait

lasts until here

Technique #2: Reduced durability wait for RO txs

Recall: In SI-HTM (and in PSI) any concurrent update transaction Tw
postpones its commit (in HTM) until Tr has completed
Insight: Tr will never observe the writes of Tw, so Tr doesn’t need to
wait for Tw to become durable

In PSI, Tr only needs
to wait for Tw1
durable

Technique #3:
Optimized durability commit
• More scalable than SPHT’s durability commit logic
• Based on a logical timestamp obtained by an atomic_inc instruction

executed in suspended mode

Two main advantages:
• Minimal synchronization in the critical path (after HTM commit)
• Hides latency of atomic instruction inside the SI safety wait

Evaluation

Experimental setup
• Dual-socket IBM POWER9
• 2.3GHz, 1023GB RAM, 16x4 hw threads per socket
• Running in a qemu VM (required for suspend-resume)

• Hash map benchmark
• 10% insert/remove, 90% lookup
• Low contention (512 buckets)
• Large transactions, prone to capacity aborts (1.5M initial elements)

Results

w/o #1

Take-aways
• HTM is a powerful mechanism in multicore+PM architectures
• But hindered by limited capacity and no failure atomicity
• Recent advances work around each limitation but have never been

unified

• PSI: is the first solution enabling durable hardware transactions with
unlimited reads, with promising scalability

• The secret sauce: 3 novel techniques that explore the synergies
between the building blocks of PSI
• Future work: adapting PSI to the new Intel Sapphire Rapids HTM

João Barreto | joao.barreto@tecnico.ulisboa.pt | https://www.dpss.inesc-id.pt/~jpbarreto/

mailto:joao.barreto@tecnico.ulisboa.pt
https://www.dpss.inesc-id.pt/~jpbarreto/

Backup slides

What about other HTM implementations?

Technique #3: Optimized durability commit

• The challenge: how can T
obtain its logical
durability TS?

• Strawman solution:
htm_begin;
[...]
myTS=globalClock++;
tEnd;

• Increases transactional
conflicts, sacrifices
scalability

• Our synergistic solution:

• No additional
transactional conflicts

• Latency of atomic
instruction hidden
inside the waiting
window

• No harm as long as
waiting window is
longer

Isolation wait
lasts until here

Putting it all together

SPHT+SI-HTM
(no-frills) PSI

